Tri-State G&T Irrigation Pumping Optimization for Energy and Water

Webcast A: Irrigation Scheduling Optimization @ 8:30-9:45am MST

Break @ 9:45-10:15am MST

Webcast B: Pump System Optimization @10:15-11:45am MST

February 20, 2019

Welcome, and thanks for joining us today!

Reminder: <u>please mute your phone</u> when not speaking to reduce background noise.

This webcast is being recorded, including Q&A. By being on this call, you are providing your consent to be recorded.

The webcast recording and PDF of the presentation will be provided to Tri-State for distribution.

Question and Answer:

- Questions are welcome at any time throughout the webcast.
- You may type your question in the chat room if you prefer

Agenda

THURSDAY, FEBRUARY 20, 2019 (ALL TIMES MST)						
TIME	ΤΟΡΙϹ	PRESENTER				
8:30 a.m.	Welcome & Background	Myles Jensen, Tri-State G&T				
8:35 a.m.	Introductions & Learning Objectives	Sara Beaini & Micah Sweeney, EPRI				
8:40 a.m.	Part A - Irrigation Scheduling Optimization	Dr. Lameck O. Odhiambo, Steven Melvin, Jonathan Aguilar, Irrigation Innovation Consortium				
9:30 a.m.	Questions & Discussion	All				
9:45 a.m.	Break					
10:15 a.m.	Part B - Pump System Optimization	Alex Kramer & Michael Michaud, Hydraulic Institute				
11:05 a.m.	Adjustable Speed Drives (ASDs) for Energy Efficiency	Mark Stephens, EPRI				
11:20 a.m.	Emerging Technologies	Sara Beaini & Micah Sweeney, EPRI				
11:25 a.m.	Questions & Discussion	All				
11:40 a.m.	Wrap-Up	EPRI and Tri-State G&T				

www.epri.com

Why are we here?

- Tri-State and Member Systems engaging with our customers
 - Recent challenges for irrigators
- Tri-State experience with EPRI on resources for Motors/Drives/Pumps

 EPRI partners with Hydraulic Institute and Irrigation Innovation Consortium to support experience and resources for irrigation applications

Tri-State G&T Team

Myles Jensen Sr. Mgr. Member Relations <u>mjensen@tristategt.org</u> 303-254-3686

Mgr. Member Relations jbeyer@tristategt.org 303-254-3197

Matt Fitzgibbon Relationship Manager III mfitzgibbon@tristategt.org 303-254-3157

Gary Myers Relationship Manager III gmyers@trisatategt.org 303-254-3592

Mike Frailey Relationship Manager III <u>mfrailey@tristategt.org</u>

303-254-7054

Sander Blackburn Sr. Rate Specialist sblackburn@tristategt.org 303-254-3368

Lina Yong Rate Specialist ryong@tristategt.org 303-254-3169

Objective: Provide Resources on Irrigation Pumping Optimization

Today's Webcast:

- Effective Irrigation Scheduling Practices
- Pump System Optimization for Irrigation
- Operational Costs and Prices: Measuring and Quantifying
- Emerging Energy and Water Efficiency Technology Considerations

Follow-on activities:

- Regional workshop or in-depth webinars
- Irrigation Resources Audit
 - Result: Irrigation Cost Worksheet

Intro to EPRI BORN IN A BLACKOUT

EPRI'S VALUE

OUR MEMBERS...

ELECTRIC POWER RESEARCH INSTITUTE

Founded in 1972 as an independent, nonprofit center for public interest energy and environmental research

To provide value to the public, our members, and the electricity sector

THOUGHT LEADERSHIP

INDUSTRY EXPERTISE

COLLABORATIVE MODEL

- 450+ participants in more than 30 countries
- EPRI members generate approximately 90% of the electricity in the United States
- International funding nearly 25% of EPRI's research, development, and demonstrations

New York City, The Great Northeast Blackout, 1965

www.epri.com

EPRI Team

Sara Beaini Engineer/Scientist III <u>sbeaini@epri.com</u> 650-855-8535

Micah Sweeney Engineer/Scientist II <u>msweeney@epri.com</u> (865) 218-8158

Baskar Vairamohan

Sr. Technical Leader <u>bvairamohan@epri.com</u>

865-218-8189

Mark Stephens

Principal Project Manager <u>mstephens@epri.com</u>

865-218-8022

Ron Domitrovic

End-Use Energy Efficiency and Demand Response Program Manager <u>rdomitrovic@epri.com</u> 865-218-8061

Marek Samotyj

Technical Executive <u>msamotyj@epri.com</u>

650-855-8754

Alden Wright

Technical Leader <u>awright@epri.com</u> 865-218-8094

> EPCI ELECTRIC POWER RESEARCH INSTITUTE

www.epri.com

Irrigation Practices:

Irrigation Scheduling to Reduce Energy Costs

Irrigation Innovation Consortium

- The Irrigation Innovation Consortium (IIC) is a collaborative research effort to accelerate the development and adoption of water and energy efficient irrigation technologies and practices through public-private partnerships.
 - <u>https://irrigationinnovation.org/</u>
- The Consortium has five founding university partners (Colorado State University, University of Nebraska, Texas A&M Agricultural Research, California State University - Fresno, and Kansas State University) and eight founding industry partners.
- The Consortium seeks to address growing water scarcity domestically (e.g. western United States) and internationally by enhancing energy and water use efficiency in irrigated food systems and amenity landscapes.

10

Water for **Food DAUGHERTY GLOBAL INSTITUTE** *at the University of Nebraska*

Irrigation Innovation Consortium Team

Steven R. Melvin Extension Educator Southeast Research & Extension Center University of Nebraska <u>steve.melvin@unl.edu</u> 308-946-3843

Dr. Jonathan Aguilar Assistant Professor Southwest Research Extension Center Kansas State University jaguilar@ksu.edu 620-275-9164

www.epri.com

Dr. Lameck Odhiambo Research Associate Professor & Irrigation Specialist, DWFI University of Nebraska <u>lodhiambo2@unl.edu</u> 402-472-0023

Dr. Christopher Neale Professor of Biological Systems Engineering & Director of Research, DWFI University of Nebraska <u>cneale2@unl.edu</u> 402-472-5145

Joel Schneekloth Regional Water Resource Specialist Colorado Water Institute Colorado State University Extension joel.schneekloth@colostate.edu 970-345-0508

Review of Total Energy in Irrigated Agriculture

Total energy use in irrigated agriculture includes:

- Field operations and tillage
- Seed sources
- Chemicals
- Fertilizer
- Irrigation
- Harvest and drying

Review of Total Energy in Irrigated Agriculture

Total energy use in irrigated agriculture includes:

- Field operations and tillage
- Seed sources
- Chemicals
- Fertilizer
- Irrigation
- Harvest and drying

Irrigation systems use energy to deliver water from source and distribute it on the field. Thus improvements in the performance of the irrigation system components can result in significant energy savings

Factors Affecting Irrigation Energy Use

Source: Center Pivot Management Handbook

Why Should I Want To Do Irrigation Scheduling?

- To know when to start for the season
 - Save 1-2 inches of water
- To know when to irrigate during the irrigation season
 - Variation in rainfall, crop water use, and well capacity-may use more some years and save a lot on other years (-2 to 10 inches)
- To know how soon to begin delaying the start of the next irrigation to use up the stored soil water by crop maturity
 - Save 2 to 5 inches

Corn Yield Response to Total Applied Water

Data from Irmak and Rathje. 2008. Plant growth and yield as affected by wet soil conditions due to flooding or over-irrigation. University of Nebraska NebGuide G1904

Wheat Yield Response to Total Applied Water

Data from Zhang et al. 2000. Management of supplemental irrigation of winter wheat for maximum profit. Food and Agricultural Organization of the United Nations

17

Soil Water Balance

www.epri.com

Source-University of Nebraska Lincoln-Extension

Irrigation Scheduling Requires Knowledge of the Following:

 \circ The soil

o The soil-water status

 \circ The crops

• The status of crop stress

 The potential yield reduction if the crop remains in a stressed condition

Irrigation Scheduling Requires Knowledge of the Following:

The soil

Each soil has a different moisture holding characteristics. Such characteristics include soil depth, available water holding capacity per foot of soil, and the relationship between soil water and matrix potential

Available Water and Minimum Water Balance to Maintain Evapotranspiration for Soil Textural Classes

	Minimum water balance ¹ ——% of available water——						
				60%	50%		
		100%		Alfalfa, dry beans,	Corn, warm season		
Soil textural		Available	75 %	cool season pasture,	pasture, sorghum,		
classification		water	Potatoes	or small grains	soybeans, or sugarbeets		
		in/ft ²					
Fine sand		1.0	0.8	0.6	0.5		
Loamy sand		1.1	0.8	0.7	0.6		
Sandy loam		1.4	1.0	0.8	0.7		
Silty clay or clay		1.6	1.2	1.0	0.8		
Fine sandy loam, Silty clay loam, or Clay							
loam		1.8	1.4	1.1	0.9		
Sandy clay loam		2.0	1.5	1.2	1.0		
Loam, Very fine sandy loam, or Silt loam topsoil	Silty clay loam or silty clay subsoil	2.0	1.5	1.2	1.0		
Loam, Very fine sandy loam, or Silt loam topsoil	Medium textured subsoil	2.5	1.9	1.5	1.3		

¹Lower minimum water balances may be desirable during some crop growth stages in water-short areas or if pumping costs are high. A minimum water balance of 40 percent is generally recommended for late season water management. ²Inches of water per foot of active root zone.

Approximate Water Use Rates by Stage of Growth for Various Crops

Water use rate in/day	Corn	Grain sorghum	Soybeans	Alfalfa*	Dry beans	Sugarbeets	Winter wheat
0.18						June 15	Spring growth
0.20							
0.22			Full bloom			July 1	
0.24	12 leaf				Rapid vegetative growth		Joint
0.26		Flag leaf	Begin pod				
0.28	Early tassel	Boot		June 15			
0.30	Silking	Half bloom	Full pod	July 1	Flowering and pod devevelopment	July 15	Boot
0.28				August 1			
0.26	Blister	Soft dough				August 1	
0.24	Milk		Seed fill	August 15			
0.22				Sept 1			Dough
0.20	Begin dent						
0.18	Full dent	Hard dough			Pod fill and maturation		

*Alfalfa water use rates should be multiplied by 0.50 during the first 10 days following cutting and by 0.75 for the 10th to 20th days following cutting.

Chart from EC709 Irrigation Scheduling: Checkbook Method

Suggested Root Depth at Various Stages of Growth for Irrigation Scheduling

Root Depth	Com	Carthorne	Grain	Spring	Winter	A 16 16	Guardia	Durcharma	Established	Deterterer
(11)	Corn	Soybeans	sorgnum	grains	wneat	Alfalfa	Sugarbeets	Dry beans	pasture	Potatoes
1.0	Vegetative	Vegetative	Vegetative					Vegetative		Seeding
								Initial flower		
1.5								pod set		Bloom
		Early			Fall			Beginning	Cool	
2.0	12 leaf	bloom			growth		June 1	pod fill	season	
					Spring			Full seed		
2.5	16 leaf	Full bloom	Flag leaf	Joint	growth		July 1	fill		Maturity
		Pod							Warm	
3.0	Silking	elongation	Boot	Boot	Joint		July 15		season	
3.5	Blister		Bloom	Flowering	Boot		Aug. 1			
	Beginning	Full				Established				
4.0	dent	seed fill	Dough	Dough	Dough	stand	Sept. 1			

Irrigation Scheduling Requires Knowledge of the Following:

 The potential yield reduction if the crop remains in a stressed condition

Evapotranspiration Deficit Impact on Corn Yield

Graph from Crop Water Management, AGLW Water Management Group, FAO

Some Basic Techniques that Farmers Use for Irrigation Scheduling

- 1. Irrigation calendar method
- 2. Crop stress indicators
- 3. Soil water tension indicators
- 4. Soil volumetric water content measurements
- 5. Evapotranspiration data (ET) for irrigation scheduling
- Estimate soil-water using accounting approach (check book method)

Some Basic Techniques that Farmers Use for Irrigation Scheduling

Crop stress indicators

- These methods do not say how much to irrigate, but only show that the plant is under stress. Stress indicators include:
 - IRT (Infrared Thermometer)
 - Change of color
 - Curling of leaves (corn, wheat etc.)

Plant Science Infrared thermometer

Granular Matrix Sensors

- Soil water potential
- Watermark

Volumetric Water Content Sensors

- TDR
- TDT
- Capacitance Probes
- Others

- Real-time monitoring
- Can be integrated into apps for pivot monitor and control

www.epri.com

Depths to Place Sensors

- There are no right or wrong intervals to install sensors
- The Soil Water Sensor Conversion Charts are designed to be used with sensors representing a 1 foot layer of soil
- Thus it is the most convenient to install sensors at 6, 18, 30, and 42 inches
- Only use readings from the sensors in the currently active root zone of the crop

Location of Soil Moisture Sensors & Installation

- The location of the sensors should have soil water holding characteristics that represent the whole field or to be more conservative
- In cases where a single field contains both heavy and light soils, it is recommended that the area containing each soil type be monitored and managed for irrigation as a separate unit
- Use field mapping technologies to help identify differences in water holding capacity
- Place the sensors between plants within a crop row at their desired depths.
- Flag the sensors so that they are not damaged during field operations

Using Management Chart with Hansen Logger

Irrigation Scheduling Using the Chart Management Zones

Advantages

- Simple and easy to make very quick decisions
- Do not need to look at the number or do any calculations

Disadvantages

- Less accuracy than calculating water levels
- Need some experience to make good decisions

Nebras Lir	Nebraska Lincoln EXTENSION				
	Wa	itermark Senso	or Chart		
		Silt Loam			
Water Hold	ling Capacity	y, inches/foot =	2.00		
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone		
5	157	1.14	High Drainage Water Zone		
10 15 20 25	139 125 114 106	0.78 0.50 0.28 0.11	Top soil layer may get this wet from rain or irrigation, but do not irrigate deep layers to this level.		
29	100	0.00	Field Capacity		
30 35 40 45 50 55	99 93 88 83 80 76	-0.03 -0.15 -0.25 -0.33 -0.41 -0.48	Rain Storage Zone Keep a one-foot layer of soil dryer than this to store rain.		
60 70 80	73 68 63	-0.54 -0.64 -0.73	Desired Water Zone Keep the deeper soil layers in this range. The goal is to dry out the		
90 100 120	60 56 51	-0.81 -0.87 -0.98	lower layers through out the summer and be in the low water zone by crop maturity.		
160 180 200	43 40 37	-1.07 -1.14 -1.20 -1.26	Low Water Zone Keep a one-foot layer wetter than this range to avoid stress.		

Irrigation Scheduling Using the Chart Management Zones

<u>Example</u>	Corn-silk stage
Top foot	15 CB
Second foot	100 CB
Third foot	70 CB
Fourth foot	33 CB

www.epri.com

Root Depth (ft.)	Corn	
1.0	Vegetative	
1.5		
2.0	12 leaf	
2.5	16 leaf	
3.0	Silking	
3.5	Blister	
4.0	Beginning dent	

Nebras	ka ecoln [®] EXTE	IANR			
	Watermark Sensor Chart				
		Silt Loam			
Water Hold	ling Capacity	y, inches/foot =	2.00		
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone		
5	157	1.14	High Drainage Water Zone		
10 15 20	139 125 114	0.78 0.50 0.28	Top soil layer may get this wet from rain or irrigation, but do not irrigate deep layers to this level.		
25	106	0.11			
29	100	0.00	Field Capacity		
30 35	99 93	-0.03 -0.15	Rain Storage Zone		
40 45	88 83	-0.25 -0.33	Keep a one-foot layer of soil dryer than this to store rain.		
50 55	80 76	-0.41 -0.48			
60 70	73 68	-0.54 -0.64	Desired Water Zone Keep the deeper soil layers in this		
90 100	63 60	-0.73 -0.81	range. The goal is to dry out the lower layers through out the		
120 140	50 51 47	-0.98 -1.07	summer and be in the low water zone by crop maturity.		
160 180	43 40	-1.14	Low Water Zone		
200	37	-1.26	this range to avoid stress.		

- Rain at Curtis during the growing season was just over 18 inches
- Total rain from 10/1/2009 to 9/20/2010 was over 30 inches
- Total irrigation on the Full Watered was 3.9 inches
- Demonstration plot yield (Not replicated) 217 bu/a

Irrigation Scheduling using Percent of Available Water

Advantages

- A very intuitive number to use
- Very simple to determine using the charts
- Provides a good indication of the adequacy of water for the crop

Disadvantages

- Less accuracy than calculating the volume of water in the root zone
 - Requires some calculations

Nebras Lir	ka EXTE	IANR.				
	Watermark Sensor Chart					
	Silt Loam					
Water Hold	ling Capacit	y, inches/foot =	2.00			
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone			
5	157	1.14	High Drainage Water Zone			
10 15 20 25	139 125 114 106	0.78 0.50 0.28 0.11	Top soil layer may get this wet from rain or irrigation, but do not irrigate deep layers to this level.			
29	100	0.00	Field Capacity			
30 35 40 45 50 55	99 93 88 83 80 76	-0.03 -0.15 -0.25 -0.33 -0.41 -0.48	Rain Storage Zone Keep a one-foot layer of soil dryer than this to store rain.			
60	73	-0.54	Desired Water Zone			
70 80 90 100 120 140	68 63 60 56 51 47	-0.64 -0.73 -0.81 -0.87 -0.98 -1.07	Keep the deeper soil layers in this range. The goal is to dry out the lower layers through out the summer and be in the low water zone by crop maturity.			
160	43	-1.14	Low Water Zone			
180 200	40 37	-1.20 -1.26	Keep a one-foot layer wetter than this range to avoid stress.			

Irrigation Scheduling using Percent of Available Water

	Wa	termark Senso	r Chart
		Silt Loam	
Water Hold	ling Capacity	y, inches/foot =	2.00
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone
5	157	1.14	High Drainage Water Zone
10	139	0.78	Top soil layer may get this wet
15	125	0.50	from rain or irrigation, but do not
20	114	0.28	irrigate deep layers to this level.
25	106	0.11	
29	100	0.00	Field Capacity
30	99	-0.03	Rain Storage Zone
35	93	-0.15	
40	88	-0.25	Keep a one-foot layer of
45	83	-0.33	soil dryer than this to store rain.
50	80	-0.41	
55	76	-0.48	
60	73	-0.54	Desired Water Zone
70	68	-0.64	Keep the deeper soil layers in this
80	63	-0.73	range. The goal is to dry out the
90	60	-0.81	lower layers through out the
100	56	-0.87	summer and be in the low water
120	51	-0.98	zone by crop maturity.
140	47	-1.07	
160	43	-1.14	Low Water Zone
180	40	-1.20	Keep a one-foot layer wetter than
200	37	-1.26	this range to avoid stress.

44

Nebraska Lincoln EXTENSION				
	Wa	termark Senso	or Chart	
		Silt Loam		
Water Hold	ling Capacity	/, inches/foot =	2.00	
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone	
5	157	1.14	High Drainage Water Zone	
10	139 125	0.78	Top soil layer may get this wet	
20	114	0.28	irrigate deep layers to this level.	
20	100	0.00	Field Canacity	
30	99	-0.03	Rain Storage Zone	
35	93	-0.15		
40	88	-0.25	Keep a one-foot layer of	
45	83	-0.33	soil dryer than this to store rain.	
50	80	-0.41		
55	76	-0.48		
60	73	-0.54	Desired Water Zone	
	68	-0.64	Keep the deeper soil layers in this	
00	60	-0.73	range. The goal is to dry out the	
100	56	-0.87	ower layers through out the	
120	51	-0.98	zone by crop maturity	
140	47	-1.07	Lono by orop matany.	
160	43	-1.14	Low Water Zone	
180	40	-1.20	Keep a one-foot layer wetter than	
200	37	-1.26	this range to avoid stress.	

<u>Example</u>	Corn-silk stage
Top foot	15 CB
Second foot	100 CB
Third foot	70 CB
Fourth foot	33 CB

Nebraska Lincoln EXTENSION				
	Wa	termark Senso	or Chart	
		Silt Loam		
Water Hold	ling Capacity	y, inches/foot =	2.00	
Watermark Plant Above(+)/Below(-) Reading Available Field Capacity, Water % inches/foot		Management Zone		
5	157	1.14	High Drainage Water Zone	
10	139	0.78	Top soil layer may get this wet	
15	125	0.50	from rain or irrigation, but do not	
20	114	0.28	irrigate deep layers to this level.	
25	106	0.11		
29	100	0.00	Field Capacity	
30	99	-0.03	Rain Storage Zone	
35	93	-0.15		
40	88	-0.25	Keep a one-foot layer of	
45	83	-0.33	soil dryer than this to store rain.	
50	80	-0.41	-	
55	76	-0.48		
50	73	-0.54	Desired Water Zone	
80	62	-0.04	Keep the deeper soil layers in this	
00 QN	60	-0.75	range. The goal is to dry out the	
100	56	-0.87	summer and be in the low water	
120	51	-0.98	zone by crop maturity	
140	47	-1.07		
160	43	-1.14	Low Water Zone	
180	40	-1.20	Keep a one-foot layer wetter than	
200	37	-1.26	this range to avoid stress.	

<u>Example</u>	Corn-silk stage
Top foot	15 CB
Second foot	100 CB
Third foot	70 CB

<u>Example I.</u>				
Available Water, Percentage				
Top foot Second foot	125 + 56			
Third foot	+ 68			
Total	249			
Average	249/3=83%			

Advantages

- Provides the most accuracy
- Simple to determine using the charts
- Determines how much water is left, how much it will hold, and
 how quickly irrigation needs to be started
- Provides a must have number to determine how much water is needed at the end of the season

Disadvantages

• Requires some calculations and a little more time

www.epri.com

Nebraska Lincoln EXTENSION				
	Wa	atermark Senso	or Chart	
		Silt Loam		
Water Hold	ling Capacit	y, inches/foot =	2.00	
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone	
5 10	157 139	1.14 0.78	High Drainage Water Zone	
15 20 25	125 114 106	0.50 0.28 0.11	from rain or irrigation, but do not irrigate deep layers to this level.	
29	100	0.00	Field Capacity	
30 35 40 45 50 55	99 93 88 83 80 76	-0.03 -0.15 -0.25 -0.33 -0.41 -0.48	Rain Storage Zone Keep a one-foot layer of soil dryer than this to store rain.	
60 70 80 90 100 120	73 68 63 60 56 51	-0.54 -0.64 -0.73 -0.81 -0.87 -0.98	Desired Water Zone Keep the deeper soil layers in this range. The goal is to dry out the lower layers through out the summer and be in the low water zone by crop maturity.	
140 160 180 200	47 43 40 37	-1.07 -1.14 -1.20 -1.26	Low Water Zone Keep a one-foot layer wetter than this range to avoid stress.	

Nebraska Lincoln EXTENSION						
Watermark Sensor Chart						
		Silt Loam				
Water Hold	ling Capacity	y, inches/foot =	2.00			
Watermark Reading Centibars	Plant Available Water %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone			
5	157	1.14	High Drainage Water Zone			
10 15 20 25	139 125 114 106	0.78 0.50 0.28 0.11	Top soil layer may get this wet from rain or irrigation, but do not irrigate deep layers to this level.			
29	100	0.00	Field Capacity			
30	99	-0.03	Rain Storage Zone			
35	93	-0.15				
40	88	-0.25	Keep a one-foot layer of			
45	83	-0.33	soil dryer than this to store rain.			
50	50 80 -0.41		-			
55	<u>/b</u>	-0.48				
70	68	-0.54	Desired Water Zone			
80	63	-0.73	range. The goal is to dry out the			
	60	-0.81	lower lavers through out the			
100	56	-0.87	summer and be in the low water			
120	51	-0.98	zone by crop maturity.			
140	47	-1.07				
160	43	-1.14	Low Water Zone			
180	40	-1.20	Keep a one-foot layer wetter than			
200	37	-1.26	this range to avoid stress.			

<u>Example</u>	Corn-silk stage
Top foot	15 CB
Second foot	100 CB
Third foot	70 CB

<u>Example I.</u>					
Available Water,	%	In/ft			
Top foot	125	(+0.50)			
Second foot	+ 56	+(-0.87)			
Third foot	+ 68	+(-0.64)			
Total	249/3	-1.01			
Average	83%				

Nebraska Lincoln EXTENSION						
Watermark Sensor Chart						
		Silt Loam				
Water Hold	ling Capacity	y, inches/foot =	2.00			
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone			
5	157	1.14	High Drainage Water Zone			
10	139	0.78	Top soil layer may get this wet			
15	125	0.50	from rain or irrigation, but do not			
20	114	0.28	irrigate deep layers to this level.			
25	106	0.11				
29	100	0.00	Field Capacity			
30	99	-0.03	Rain Storage Zone			
35	93	-0.15				
40	88	-0.25	Keep a one-foot layer of			
45	83	-0.33	soil dryer than this to store rain.			
50 80 -0.41		-0.41				
55	76	-0.48				
50	73	-0.54	Desired Water Zone			
20	62	-0.04	Keep the deeper soil layers in this			
00	60	-0.75	range. The goal is to dry out the			
100	56	-0.01	lower layers through out the			
120	51	-0.07	summer and be in the low water			
140	47	-1.07				
160	43	-1 14	Low Water Zone			
180	40	-1.20	Keep a one-foot laver wetter than			
200	37	-1.26	this range to avoid stress.			

Example I. Available Water, F	Percent
Top foot	125
Second foot	+ 56
Third foot	+ 68
Total	249
Average	83%

<u>Example II.</u>	Available Water, Inches
<u>Column 2</u>	Column 3
@ 83 %	(-0.33) in/ft
	x 3 ft root zone
Total	-0.99 in
	below field capacity

www.epri.com

EXTENSION						
Watermark Sensor Chart						
		Silt Loam				
Water Hold	ling Capacity	y, inches/foot =	2.00			
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone			
5	157	1.14	High Drainage Water Zone			
10	139	0.78	Top soil layer may get this wet			
15	125	0.50	from rain or irrigation, but do not			
20	114	0.28	irrigate deep layers to this level.			
29	100	0.00	Field Canacity			
30	99	-0.03	Rain Storage Zone			
35	93	-0.15	Nam Otorage Zone			
40	88	-0.25	Keep a one-foot layer of			
45	83	-0.33	soil dryer than this to store rain.			
50	80	-0.41				
55	76	-0.48				
60	73	-0.54	Desired Water Zone			
/0	68	-0.64	Keep the deeper soil layers in this			
00	60 60	-0.73	range. The goal is to dry out the			
100	56	-0.87	ower layers through out the			
120	51	-0,98	zone by crop maturity			
140	47	-1.07	Lono by dop maturity.			
160	43	-1.14	Low Water Zone			
180	40	-1.20	Keep a one-foot layer wetter than			
200	37	-1.26	this range to avoid stress.			

<u>Example I.</u> Available Water,	Percent
Top foot	125
Second foot	+ 56
Third foot	+ 68
Total	249
Average	83%

<u>Example III.</u> Remain	ning Water, Inches
<u>Column 2</u>	Column 3
Used @ 83 %	(-0.33) in/ft
<u>Used @ 50%</u>	-(-0.98) in/ft
Remaining water	0.65 in/ft
	<u>x 3 ft root zone</u>
Total	1.95 in
	of water remaining

Approximate Water Use Rates by Stage of Growth for Various Crops

Water use	Corn	Grain	Sovbeans	Alfalfa*	Dry beans	Sugarbeets	Winter wheat
0.19	Com	sorgnum	Joybeans	Andna	Dry beans	June 15	Spring growth
0.18						Julie 15	Spring growth
0.20							
0.22			Full bloom			July 1	
					Rapid vegetative		
0.24	12 leaf				growth		Joint
0.26		Flag leaf	Begin pod				
0.28	Early tassel	Boot		June 15			
					Flowering and		
0.30	Silking	Half bloom	Full pod	July 1	pod devevelopment	July 15	Boot
0.28				August 1			
0.26	Blister	Soft dough				August 1	
0.24	Milk		Seed fill	August 15			
0.22				Sept 1			Dough
0.20	Begin dent						
					Pod fill and		
0.18	Full dent	Hard dough			maturation		

*Alfalfa water use rates should be multiplied by 0.50 during the first 10 days following cutting and by 0.75 for the 10th to 20th days following cutting.

Chart from EC709 Irrigation Scheduling: Checkbook Method

Nebraska Lincoln EXTENSION						
	Watermark Sensor Chart					
		Silt Loam				
Water Hold	ling Capacity	y, inches/foot =	2.00			
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone			
5	157	1.14	High Drainage Water Zone			
10 15 20 25	139 125 114 106	0.78 0.50 0.28 0.11	Top soil layer may get this wet from rain or irrigation, but do not irrigate deep layers to this level.			
29	100	0.00	Field Capacity			
30 35 40 45 50 55	99 93 88 83 83 80 76	-0.03 -0.15 -0.25 -0.33 -0.41 -0.48	Rain Storage Zone Keep a one-foot layer of soil dryer than this to store rain.			
60 70 80 90 100 120 140	73 68 63 60 56 51 47	-0.54 -0.64 -0.73 -0.81 -0.87 -0.98 -1.07	Desired Water Zone Keep the deeper soil layers in this range. The goal is to dry out the lower layers through out the summer and be in the low water zone by crop maturity.			
160	43	-1.14	Low Water Zone			
180 200	40 37	-1.20 -1.26	Keep a one-foot layer wetter than this range to avoid stress.			

Example III. Remain	ing Water, Inches
<u>Column 2</u>	Column 3
Used @ 83 %	-0.41 in/ft
<u>Used @ 50%</u>	-0.98 in/ft
Remaining water	0.65 in/ft
	x 3 ft root zone
Total	1.95 in
	of water remaining

Example IV. Days Until Irrigation is Required		
Remaining available water	1.95 in water	
Estimated daily water use	÷ 0.3 in/day	
Days until irrigation is required	6.5 days	

Irrigation Scheduling for Late Season Needs

- Today's date is August 10th
- Corn is at the R4 (Dough) stage
- Allow soil to dry to 40%
 plant available water
- Location is central Buffalo
 County

Nebras Lir	ka Icoln EXTE	IANR.		
	Watermark Sensor Chart			
		Silt Loam		
Water Hold	ling Capacity	2.00		
Watermark Reading Centibars	Plant Available Water, %	Soil Water Above(+)/Below(-) Field Capacity, inches/foot	Management Zone	
5	157	1.14	High Drainage Water Zone	
10 15 20 25	139 125 114 106	0.78 0.50 0.28 0.11	Top soil layer may get this wet from rain or irrigation, but do not irrigate deep layers to this level.	
29	100	0.00	Field Capacity	
30 35 40 45 50 55	99 93 88 83 80 76	-0.03 -0.15 -0.25 -0.33 -0.41 -0.48	Rain Storage Zone Keep a one-foot layer of soil dryer than this to store rain.	
60 70	73	-0.54	Desired Water Zone	
70 80 90 100 120 140	60 60 56 51 47	-0.64 -0.73 -0.81 -0.87 -0.98 -1.07	Keep the deeper soil layers in this range. The goal is to dry out the lower layers through out the summer and be in the low water zone by crop maturity.	
160	43	-1.14	Low Water Zone	
180 200	<u>40</u> <u>37</u>	-1.20	Keep a one-foot layer wetter than this range to avoid stress.	

Example III. Remaining Water, Inches		
Column 2	Column 3	
Used @ 68%	(- 0.64) in/ft	
<u>Used @ 40%</u>	-(-1.20) in/ft	
Remaining water	0.56 in/ft	
	x 4 ft root zone	
Total	2.24 in of water remaining	

Example IV. Days Until Irrigation is Required			
Remaining available water	2.24 inches		
Estimated daily water use	÷ 0.18 in/day		
Days until irrigation is required	12 days		

Some Basic Techniques that Farmers Use for Irrigation Scheduling

Evapotranspiration (ET) based irrigation scheduling

Three types of ET data can be used for scheduling irrigation in the field.

- Published daily ET data
- Measured ET data using ET-gage or other devices
- Historical ET data

Soil Water Balance

Some Basic Techniques that Farmers Use for Irrigation Scheduling

Published data for ET for irrigation scheduling

Published ET values can be used for irrigation scheduling. Sometimes, published ET values can be for reference grass or alfalfa evapotranspiration (ETo). If it is ETo, it must be changed to crop evapotranspiration (ETc) using crop coefficients (Kc) as follows:

ETc = ETo x Kc

Some Sources of Published ET Data for the Tri-State Region

- 1. Kansas State University Weather Data Library (<u>http://mesonet.k-state.edu/</u>)
- 2. The High Plains Regional Climate Center Automated Weather Data Network (AWDN, serving Colorado, lowa, Kansas, Minnesota, Missouri, Montana, North Dakota, Nebraska, South Dakota and Wyoming (<u>http://www.hprcc.unl.edu/awdn/</u>)
- 3. The North Dakota Agricultural Weather Network (NDAWN, serving North Dakota, Montana and Minnesota, <u>http://ndawn.ndsu.nodak.edu/</u>)
- 4. Oklahoma Agweather (<u>http://agweather.mesonet.org/</u>)
- 5. Colorado climate center CoAgMET (<u>www.coagmet.com</u>)
- 6. The Texas High Plains Evapotranspiration Network (TXHPET, <u>http://txhighplainset.tamu.edu</u>)
- 7. CropWatch (<u>https://cropwatch.unl.edu/gdd-etdata</u>)

Some Basic Techniques that Farmers Use for Irrigation Scheduling

Measured ET Using Atmometers (ETgage)

- o Low cost (\$400)
- ETgage is used to estimate reference crop evapotranspiration (ETo)
- ETgage readings is recorded daily or weekly

www.epri.com

 Crop water use or evapotranspiration (ETc) is obtained as ETc = ETo x Kc

Crop Water Use by Growth Stage – Soybeans

Nebraska Lincoln EXTENSION

Soybean Growth Stages

- VC: Cotyledon leaves with unifoliate leaves unrolled.
- V1: 1st node containing trifoliolate leaf fully expanded.
- V2: 2nd node containing trifoliolate leaf fully expanded.
- V2: 3rd node containing trifoliolate leaf fully expanded.
- R1: At least one flower on any node.
- R3: A pod 3/16 inch on one of four uppermost nodes.
- R5: Seed is 1/8 inch long in a pod of the upper four nodes.
- Begin Maturity: one brown leaf on main stem.

Weekly ETgage[®] Change in Inches **Crop Stage** Kc 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 0.18 VC Cotyledon 0.10 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 V1 1st Node 0.20 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 V2 2nd Node 0.40 0.40 0.44 0.48 0.52 0.56 0.60 0.64 0.68 0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00 1.04 1.08 1.12 1.16 1.20 V3 3rd Node 0.60 0.60 0.66 0.72 0.78 0.84 0.90 0.96 1.02 1.08 1.14 1.20 1.26 1.32 1.38 1.44 1.50 1.56 1.62 1.68 1.74 1.80 **R1 Begin Bloom** 0.90 0.90 0.99 1.08 1.17 1.26 1.35 1.44 1.53 1.62 1.71 1.80 1.89 1.98 2.07 2.16 2.25 2.34 2.43 2.52 2.61 2.70 **R2 Full Bloom** 1.00 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 **Begin Pod** 1.10 1.10 1.21 1.32 1.43 1.54 1.65 1.76 1.87 1.98 2.09 2.20 2.31 2.42 2.53 2.64 2.75 2.86 2.97 3.08 3.19 3.30 Full Pod **R5 Begin Seed Full Seed Begin Mature** 1.08 1.26 1.35 1.53 1.80 1.89 1.98 2.07 2.16 2.52 2.61 2.70 0.90 0.90 0.99 1.17 1.44 1.62 1.71 2.25 2.34 2.43 **Full Mature** 0.22 0.28 0.30 0.60 0.20 0.20 0.24 0.26 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.12 0.20 0.23 0.29 Mature 0.10 0.10 0.11 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.21 0.22 0.24 0.25 0.26 0.27 0.28 0.30

This chart can be used with readings from an ETgage® or other ET reference. First, identify the change in the ET rate across the horizontal row and then identify the current growth stage in the left column. Follow the two columns to the point where they intersect to identify the ET rate to use in your irrigation scheduling. When planning irrigation, account for soil moisture, precipitation, weather conditions, and the ET rate for growth stage of your crop.

Extension is a Division of the Institute of Agriculture and Natural Resources at the University of Nebraska-Lincoln cooperating with the Counties and the United States Department of Agriculture.

University of Nebraska-Lincoln Extension educational programs abide with the nondiscrimination policies of the University of Nebraska-Lincoln and the United States Department of Agriculture.

ET-Based Scheduling Implementation

2. A strategy for ET based irrigation scheduling is the checkbook irrigation scheduling approach as follows:

- The soil acts as a bank to store water
- Rain + irrigation = deposits
- Evapotranspiration + Deep percolation + Runoff = withdrawals
- There is a minimum allowable balance (minimum balance)
- There is a maximum possible deposit (Field capacity)

Checkbook Irrigation Scheduling Calculations

$SWB_{today} = SWB_{yesterday} + IR_{today} + RF_{today} - ET_{today} - WL_{today}$

Where:

- SWB = Soil water balance (inches)
- IR = Irrigation application (inches)
- RF = Rainfall (inches)
- ET = Evapotranspiration (inches)
- WL = Water losses (deep percolation, surface runoff, etc.)

Tools for Irrigation Scheduling

• Forms (irrigation scheduling worksheets for manual calculation)

- Computer spreadsheets/Online forms programed to track soil moisture – "Anyone KanSchedule irrigation!" (<u>https://bae.engg.ksu.edu/mobileirrigationlab/</u> of K-State)
- Computer models Hybrid-Maize and Soysim (unl.edu), WISE (wise.colostate.edu), AquaCrop etc.

Gross irrigation application = Crop Water requirement x System Efficiency

Irrigation system type	Efficiency (%)	Irrigation system type	Efficiency (%)
Sprinkler		Surface	
Center pivot and lateral move	85-90	Gated pipe with reuse	70-75
Skid tow/Side roll	75-80	Gated pipe without reuse	50-55
Big gun traveler	70-75	Gated pipe with surge	75-80
Subsurface Drip		Siphon tube without reuse	45-50
SDI	90-95	Siphon tube with reuse	65-70

Strategy for Irrigation Scheduling with Under Capacity Center Pivot Systems

- Some center pivot systems are planned and designed with
- insufficient capacity (GPM) to supply full daily crop water use.
- Growers with insufficient capacity systems should use high water
- management strategy that ensures that the soil root zone is filled
- with water by either rainfall or pre-watering or early season
- irrigation, before daily water use exceeds the irrigation capacity

Combining Soil Moisture Sensing and ET for Irrigation Scheduling

Soil moisture sensing is highly recommended to supplement ET based irrigation scheduling. Periodically (every one or two weeks), measure the soil moisture balance in the field and compare it the checkbook balance. If discrepancy occurs, use the newly measured soil water status to recalibrate the checkbook next day start water balance.

TAKE HOME MESSAGE Use One or More for Scheduling Feedback

www.epri.com

Upcoming event...

- Central Plains Irrigation Association Conference and Exposition
 - Tues/Wed Feb 26-27, 2019
 - Holiday Inn Convention Center: 110 South 2nd Ave. Kearney, NE
 - <u>https://www.ksre.k-state.edu/sdi/revents/cpia.html</u>
- Various Technical Sessions and Exhibition
 - Irrigation Scheduling Methods and Technologies
 - Managing Irrigation and Nitrogen Fertilization
 - Performance of Irrigation Systems
 - Advances in Irrigation Systems
 - Irrigated Cropping Systems
 - Irrigation Management Strategies under Drought or Water Limiting Conditions
 - Testing Ag Performance Solutions (TAPS)

Thank You

Irrigation Resources Audit

- Objective: quantify real costs of irrigation using gas vs. electric
- EPRI offering energy audit to 5 irrigators <u>at no cost</u>
- Example info:
 - Acreage, crops:
 - Number of pumps, wells, pivots:
 - Horsepower of pumps used
 - Average head pressure:
 - Irrigation schedule (daily, seasonal):
 - Electrical service available? 3-phase? What voltage?

Please reach out if you would like to participate!

Irrigation Discussion Questions

- Irrigation scheduling practices: Factors? Options? Sensors? Water balance? Etc..
- Remote telemetry?
- Terrain type and variations?
- Number of water sources per pivot?
- Length of pipe runs to pivots?
- Current challenges?
- Technology interest?

Agenda - Break Time

THURSDAY, FEBRUARY 20, 2019 (ALL TIMES MST)

TIME	ТОРІС	PRESENTER
8:30 a.m.	Welcome & Background	Myles Jensen, Tri-State G&T
8:35 a.m.	Introductions & Learning Objectives	Sara Beaini & Micah Sweeney, EPRI
8:40 a.m.	Part A - Irrigation Scheduling Optimization	Dr. Lameck O. Odhiambo, Steven Melvin, Jonathan Aguilar, Irrigation Innovation Consortium
9:30 a.m.	Questions & Discussion	All
9:45 a.m.	Break	
10:15 a.m.	Part B - Pump System Optimization	Alex Kramer & Michael Michaud, Hydraulic Institute
11:05 a.m.	Adjustable Speed Drives (ASDs) for Energy Efficiency	Mark Stephens, EPRI
11:20 a.m.	Emerging Technologies	Sara Beaini & Micah Sweeney, EPRI
11:25 a.m.	Questions & Discussion	All
11:40 a.m.	Wrap-Up	EPRI and Tri-State G&T

Together...Shaping the Future of Electricity

